Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 172: 116281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364736

RESUMO

Progesterone (P4) is a crucial reproductive hormone that acts as a precursor for all other endogenous steroids. P4 modulates transcriptional activity during reproduction by binding to progesterone receptors (PR). However, the physiological role of P4 in the liver is understudied. P4-mediated lipid metabolism in the liver was investigated in this study, as P4 facilitates insulin resistance and influences energy metabolism. While exogenous lipids are mainly obtained from food, the liver synthesizes endogenous triglycerides and cholesterol from a carbohydrate diet. Hepatic de novo lipogenesis (DNL) is primarily determined by acetyl-CoA and its biosynthetic pathways, which involve fatty acid and cholesterol synthesis. While P4 increased the hepatic levels of sterol regulatory element-binding protein 1 C (SREBP-1 C), peroxisome proliferator-activated receptor-gamma (PPARγ), acetyl-CoA carboxylase (ACC), and CD36, co-treatment with the P4 receptor antagonist RU486 blocked these proteins and P4-mediated lipogenesis. RNA sequencing was used to assess the role of P4 in lipogenic events, such as fatty liver and fatty acid metabolism, lipoprotein signaling, and cholesterol metabolism. P4 induced hepatic DNL and lipid anabolism were confirmed in the liver of ovarian resection mice fed a high-fat diet or in pregnant mice. P4 increased lipogenesis directly in mice exposed to P4 and indirectly in fetuses exposed to maternal P4. The lipid balance between lipogenesis and lipolysis determines fat build-up and is linked to lipid metabolism dysfunction, which involves the breakdown and storage of fats for energy and the synthesis of structural and functional lipids. Therefore, P4 may impact the lipid metabolism and reproductive development during gestation.


Assuntos
Lipogênese , Progesterona , Feminino , Gravidez , Animais , Camundongos , Progesterona/farmacologia , Fígado , Colesterol , Ácidos Graxos , Lipídeos
2.
Biomater Sci ; 11(16): 5490-5501, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37367827

RESUMO

Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the digestive tract that causes pain and weight loss and also increases the risk of colon cancer. Inspired by the benefits of plant-derived nanovesicles and aloe, we herein report aloe-derived nanovesicles, including aloe vera-derived nanovesicles (VNVs), aloe arborescens-derived nanovesicles (ANVs), and aloe saponaria-derived nanovesicles (SNVs) and evaluate their therapeutic potential and molecular mechanisms in a dextran sulfate sodium (DSS)-induced acute experimental colitis mouse model. Aloe-derived nanovesicles not only facilitate markedly reduced DSS-induced acute colonic inflammation, but also enable the restoration of tight junction (TJ) and adherent junction (AJ) proteins to prevent gut permeability in DSS-induced acute colonic injury. These therapeutic effects are ascribed to the anti-inflammatory and anti-oxidant effects of aloe-derived nanovesicles. Therefore, aloe-derived nanovesicles are a safe treatment option for IBD.


Assuntos
Aloe , Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Aloe/metabolismo , Proteínas de Junções Íntimas/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Modelos Animais de Doenças , Sulfato de Dextrana , Camundongos Endogâmicos C57BL
3.
Am J Physiol Gastrointest Liver Physiol ; 324(6): G442-G451, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070746

RESUMO

Alcohol-associated liver disease (ALD) is caused by excessive abuse of alcohol. One of the most representative causes of ALD is the action of acetaldehyde. Acetaldehyde is a toxic material produced when alcohol is metabolized through some enzymes, and it causes endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and tissue injury. In this study, we assessed the relationship between Progesterone receptor membrane component 1 (PGRMC1) and ALD because PGRMC1 is expressed in the ER and mitochondria in the liver. Using the chronic and binge alcohol feeding models, we assessed acetaldehyde level, liver damage, alcohol-degrading enzymes, and ER stress. Compared with wild-type (WT) mice ethanol-fed Pgrmc1 knockout (KO) mice had higher levels of alanine aminotransferase (ALT) and alcohol-degrading enzymes, and Pgrmc1 KO mice had high serum acetaldehyde and ER stress levels compared with WT mice with control and ethanol feeding. Loss of Pgrmc1 increased acetaldehyde production through increased expression of alcohol dehydrogenase and catalase, which led to increased ER stress and suggested that cell death was promoted. In conclusion, it has been proposed that the loss of PGRMC1 could promote ALD and cause liver damage in alcohol-abusing humans.NEW & NOTEWORTHY Loss of Pgrmc1 increased acetaldehyde production, and excess acetaldehyde consequently increased ER stress, which activates apoptosis. Since low expression of PGRMC1 is vulnerable to alcoholic liver damage, the loss of PGRMC1 expression may increase susceptibility to ALD.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Humanos , Camundongos , Animais , Etanol/toxicidade , Etanol/metabolismo , Acetaldeído/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Estresse Oxidativo , Camundongos Knockout , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
4.
J Nutr Biochem ; 116: 109310, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871839

RESUMO

Nicotinamide riboside (NR) is considered a super-supplement that prevents obesity and diabetes. While NR has been investigated for various effects depending on nutritional conditions, metabolic research on women and pregnant women has rarely been discussed. In this study, we focused on the glycemic control of NR in females and found the protective role of NR in pregnant animals under hypoglycemic conditions. Metabolic-tolerance tests were performed in vivo under progesterone (P4) exposure after ovariectomy (OVX). NR enhanced resistance to energy deprivation and showed a slight increase in gluconeogenesis in naïve control mice. However, NR reduced hyperglycemia and significantly induced gluconeogenesis in OVX mice. While NR reduced hyperglycemia in the P4-treated OVX mice, it reduced insulin response and substantially increased gluconeogenesis. Similar to animal experiments, NR increased gluconeogenesis and mitochondrial respiration in Hep3B cells. The gluconeogenic function of NR is mediated by tricarboxylic acid cycle (TCA) cycle enrichment, as residual pyruvate could induce gluconeogenesis. NR recovered fetal growth by increasing blood glucose levels when hypoglycemia was induced by diet-restriction during pregnancy. Our study revealed the glucose-metabolic function of NR in hypoglycemic pregnant animals, suggesting NR as a dietary supplement to improve fetal growth. Because diabetic women suffer from hypoglycemia due to insulin therapy, NR has therapeutic potential for use as a glycemic control pill.


Assuntos
Hiperglicemia , Hipoglicemia , Feminino , Humanos , Camundongos , Gravidez , Animais , Niacinamida/farmacologia , Hipoglicemia/prevenção & controle , Insulina , Suplementos Nutricionais , Hipoglicemiantes , Desenvolvimento Fetal , Hiperglicemia/prevenção & controle
5.
Cells ; 12(5)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36899888

RESUMO

Heart failure (HF) is an emerging epidemic with a high mortality rate. Apart from conventional treatment methods, such as surgery or use of vasodilation drugs, metabolic therapy has been suggested as a new therapeutic strategy. The heart relies on fatty acid oxidation and glucose (pyruvate) oxidation for ATP-mediated contractility; the former meets most of the energy requirement, but the latter is more efficient. Inhibition of fatty acid oxidation leads to the induction of pyruvate oxidation and provides cardioprotection to failing energy-starved hearts. One of the non-canonical types of sex hormone receptors, progesterone receptor membrane component 1 (Pgrmc1), is a non-genomic progesterone receptor associated with reproduction and fertility. Recent studies revealed that Pgrmc1 regulates glucose and fatty acid synthesis. Notably, Pgrmc1 has also been associated with diabetic cardiomyopathy, as it reduces lipid-mediated toxicity and delays cardiac injury. However, the mechanism by which Pgrmc1 influences the energy-starved failing heart remains unknown. In this study, we found that loss of Pgrmc1 inhibited glycolysis and increased fatty acid/pyruvate oxidation, which is directly associated with ATP production, in starved hearts. Loss of Pgrmc1 during starvation activated the phosphorylation of AMP-activated protein kinase, which induced cardiac ATP production. Pgrmc1 loss increased the cellular respiration of cardiomyocytes under low-glucose conditions. In isoproterenol-induced cardiac injury, Pgrmc1 knockout resulted in less fibrosis and low heart failure marker expression. In summary, our results revealed that Pgrmc1 ablation in energy-deficit conditions increases fatty acid/pyruvate oxidation to protect against cardiac damage via energy starvation. Moreover, Pgrmc1 may be a regulator of cardiac metabolism that switches the dominance of glucose-fatty acid usage according to nutritional status and nutrient availability in the heart.


Assuntos
Insuficiência Cardíaca , Receptores de Progesterona , Humanos , Trifosfato de Adenosina/uso terapêutico , Ácidos Graxos/metabolismo , Glucose/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas de Membrana , Miócitos Cardíacos/metabolismo , Ácido Pirúvico
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166668, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36822448

RESUMO

BACKGROUNDS AND AIMS: Type 2 diabetes mellitus (T2D) is a chronic disease characterized by insulin resistance and hyperglycemia. To investigate T2D, genetic and chemical induced hyper-obese rodent models have been experimentally developed. However, establishment of moderate-obese diabetes model will confer diverse opportunities for translational studies. In this study, we found the chemical, GLUTFOURINH® (GFI), induces post-translational degradation of glucose transporter 4 (GLUT4). We aimed to establish novel diabetic model by using GFI. METHODS AND RESULTS: Low plasma membrane GLUT4 (pmGLUT4) levels by GFI resulted in reduction of intracellular glucose uptake and TG, and increase of intracellular FFA in A204 cells. Likewise, GFI treatment decreased intracellular TG and increased intracellular FFA levels in Hep3B and 3T3-L1 cells. Mice were administered with GFI (16 mg/kg) for short-term (3-day) and long-term (28- and 31-day) to compared with vehicle injection, HFD model, and T2D model, respectively. Short-term and long-term GFI treatments induced hyperglycemia and hyperinsulinemia with low pmGLUT4 levels. Compared to HFD model, long-term GFI with HFD reduced adipose weight and intracellular TG accumulation, but increased plasma FFA. GFI treatment resulted in insulin resistance by showing low QUICKI and high HOMA-IR values, and low insulin response during insulin tolerance test. Additionally, low pmGLUT4 by GFI heightened hyperglycemia, hyperinsulinemia, and insulin resistance compared to T2D model. CONCLUSIONS: In summary, we report GLUT4 degradation by novel chemical (GFI) induces moderate-obese diabetes representing hyperglycemia, insulin resistance and low intracellular lipid accumulation. The GLUT4 degradation by GFI has translational value for studying diseases related to moderate-obese diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Hiperinsulinismo , Resistência à Insulina , Humanos , Camundongos , Animais , Resistência à Insulina/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Insulina , Hiperglicemia/metabolismo , Obesidade , Lipídeos
7.
Int Urol Nephrol ; 55(1): 17-28, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36107291

RESUMO

PURPOSE: Benign prostatic hyperplasia (BPH) is a urogenital disorder that affects approximately 85% of males who are over 50 years of age. Hydrocotyle ramiflora (HR), belonging to Apiaceae family, is used to treat urinary system diseases such as urine retention in traditional Chinese herbal medicine. In this study, we evaluated the effects of HR in the BPH animal model. METHODS: We induced BPH in rats via subcutaneous (sc) injections of testosterone propionate (TP, 3 mg/kg). Rats were also administered HR (150 mg/kg), finasteride (10 mg/kg), or vehicle via oral gavage. After induction, prostate glands were collected, weighed, and processed for further analysis, including histopathological examination and immunohistochemistry. In addition, the mRNA expression of inflammatory cytokines in prostatic tissues was determined by quantitative real-time PCR (qRT-PCR). The protein expression of pro-apoptotic markers was examined using western blotting. RESULTS: HR treatment significantly reduced the prostate weight, epithelial thickness, and proliferating cell nuclear antigen (PCNA) expression, with the levels of cleaved caspase-3 and Bcl-2-associated X (Bax) protein considerably increased compared to BPH group. HR also decreased inflammatory cell infiltration and pro-inflammatory cytokine levels compared with BPH group. Furthermore, the expression of phosphor-nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were reduced by HR treatment. CONCLUSION: These results indicate that HR suppresses the development of BPH associated with anti-proliferative, pro-apoptotic, and anti-inflammatory effects, suggesting it is a potential alternative therapeutic agent for BPH.


Assuntos
Centella , Hiperplasia Prostática , Masculino , Humanos , Ratos , Animais , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Testosterona/uso terapêutico , Ratos Sprague-Dawley , Extratos Vegetais/efeitos adversos
8.
Pharm Biol ; 60(1): 2040-2048, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36267048

RESUMO

CONTEXT: Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with respiratory symptoms and narrowing of airways. Gyeji-tang (GJT) is a traditional Asian medicine that has been used to relieve early-stage cold symptoms, headache, and chills. OBJECTIVE: We examined the effect and potential molecular action mechanism of GJT in a mouse model of COPD induced by cigarette smoke (CS) plus lipopolysaccharide (LPS). MATERIALS AND METHODS: COPD was induced in C57BL/6J mice via daily exposure to CS for 1 h for 8 weeks and intranasal administration of LPS on weeks 1, 3, 5, and 7. GJT (100 or 200 mg/kg) or roflumilast (5 mg/kg) was administrated daily for the final 4 weeks of COPD induction. RESULTS: Administration of GJT significantly suppressed the CS/LPS-induced increases in: the numbers of total cells and macrophages in bronchoalveolar lavage fluid; the expression levels of tumour necrosis factor-α, interleukin (IL)-6, IL-1ß, and IL-8; the activities (phosphorylation) of nuclear factor kappa B and signal transducer and activator of transcription 3; and the expression levels of the structural remodelling markers, transforming growth factor beta, matrix metallopeptidase (MMP)-7, and MMP-9. DISCUSSION AND CONCLUSIONS: These results demonstrate that GJT prevents the lung inflammation and airway remodelling induced by CS plus LPS exposure in mice, suggesting that GJT may have therapeutic potential for the treatment of COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Fator de Transcrição STAT3/metabolismo , NF-kappa B/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Interleucina-8/uso terapêutico , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Pulmão , Modelos Animais de Doenças , Anti-Inflamatórios/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo
9.
Res Rep Urol ; 14: 313-326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187165

RESUMO

Introduction: Benign prostatic hyperplasia (BPH) is a non-neoplastic proliferative disease of the prostate. Eriochloa villosa (EV) reportedly possesses various pharmacological activities, including anti-lipase activity and modulation of various antioxidative enzymes. In this study, we investigate the therapeutic potential of EV against BPH in a testosterone-induced BPH rat model. Methods: Rats were subjected to a daily subcutaneous injection of testosterone (3 mg kg-1) for 4 weeks to induce BPH. Along with testosterone, rats in the treatment group were administered finasteride (10 mg kg-1) or EV (150 mg kg-1) via oral gavage. Prostatic cancer (LNCaP) cell line was used to examine the effect of EV. Results: Finasteride and EV significantly decrease the relative prostate weight, serum levels of dihydrotestosterone and testosterone, and prostate epithelial thickness. Testosterone injection induced prostatic hyperplasia and proliferating cell nuclear antigen expression; however, EV treatment significantly attenuated these effects. Moreover, finasteride- and EV-treated rats exhibit an increase in the number of TUNEL-positive cells and reduced Bcl-2 expression in the prostate tissues compared with the testosterone-treated animals. Furthermore, EV suppresses inflammatory cytokines, including interleukin (IL)-6 and IL-8, in the prostate tissues. Meanwhile, the expression of inflammatory mediator cyclooxygenase-2 is consistently upregulated in testosterone-treated rats, whereas EV treatment significantly reverses this effect. Notably, EV treatment suppresses malondialdehyde (MDA) levels and upregulates testosterone-induced catalase (CAT) expression. In addition, EV suppresses expression of androgen receptor (AR) and prostate-specific antigen (PSA) induced by testosterone in LNCaP cells. Conclusion: The present study results suggest that EV regulates prostatic proliferation, apoptosis, response to inflammation, and oxidative stress in the BPH rat model, and may, therefore, serve as a useful therapeutic agent for BPH.

10.
J Wildl Dis ; 58(2): 421-424, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35015076

RESUMO

Fatal systemic infection by Clostridium tarantellae in a wild Korean raccoon dog (Nyctereutes procyonoides koreensis) was diagnosed based on histopathology, immunofluorescence, PCR, and microbiome taxonomic profiling. Pathologic features were similar to Tyzzer's disease caused by C. piliforme. This is the first report of C. tarantellae infection in Korean raccoon dogs.


Assuntos
Cães Guaxinins , Guaxinins , Animais , Clostridium , República da Coreia
11.
Artigo em Inglês | MEDLINE | ID: mdl-35035511

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) refers to a lung disorder associated with symptoms of dyspnea, cough, and sputum production. Traditionally, Yijin-tang (YJT), a mixture of Pinellia ternate, Poria cocos, ginger, Chinese liquorice, and tangerine peel, has been prescribed for the treatment of respiratory system diseases caused by dampness phlegm. This experiment investigated the therapeutic effect of YJT in a mouse model of cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD. METHODS: COPD was induced by exposing mice to CS for 1 hour per day for 8 weeks, with intranasal delivery of LPS on weeks 1, 3, 5, and 7. YJT was administered at doses of 100 and 200 mg/kg 1 hour before CS exposure for the last 4 weeks. RESULTS: YJT significantly suppressed CS- and LPS-induced increases in inflammatory cell counts and reduced interleukin-1 beta (IL-1ß), IL-6, tumor necrosis factor-alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) levels in bronchoalveolar lavage fluid (BALF) and lung tissue. In addition, YJT not only decreased airway wall thickness, average alveolar intercept, and lung fibrosis, but it also suppressed the expression of matrix metallopeptidase (MMP)-7, MMP-9, and transforming growth factor-B (TGF-ß) and collagen deposition. Moreover, YJT suppressed phosphorylation of nuclear factor-kappa B (NF-κB) as well as expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). CONCLUSION: Collectively, our findings show that YJT attenuates respiratory inflammation and airway remodeling caused by CS and LPS exposure; therefore, therapeutic applications in COPD can be considered.

12.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830439

RESUMO

Hepatocellular carcinoma (HCC) is a male-oriented malignancy; its progression is affected by sex hormones. 17α-ethinylestradiol (EE2) is a synthetic estrogen widely used as an oral contraceptive; however, it is unknown whether EE2 regulates sex hormone action in HCC. We investigated whether EE2 influences HCC risk in male androgenic environments, using mice expressing human sex hormone-binding globulin (SHBG). Two-week-old male mice were injected with diethyl-nitrosamine (DEN, 25 mg/kg) and fed an EE2 diet for 10 weeks from 30 weeks of age. Development and characteristics of liver cancer were evaluated in 40-week-old mice via molecular and histological analyses. Although EE2 did not increase HCC progression in wild-type mice, SHBG mice exhibited remarkably higher HCC risk when fed EE2. The livers of EE2-treated SHBG mice exhibited substantially increased pro-inflammatory necrosis with high plasma levels of ALT and HMGB1, and intrahepatic injury and fibers. Additionally, increased androgen response and androgen-mediated proliferation in the livers of EE2-treated SHBG mice and EE2-exposed hepatocytes under SHBG conditions were observed. As a competitor of SHBG-androgen binding, EE2 could bind with SHBG and increase the bioavailability of androgen. Our results revealed that EE2 is a novel risk factor in androgen-dominant men, predisposing them to HCC risk.


Assuntos
Androgênios/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Globulina de Ligação a Hormônio Sexual/genética , Androgênios/genética , Animais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Dietilnitrosamina/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Etinilestradiol/farmacologia , Humanos , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Caracteres Sexuais
13.
BMC Complement Med Ther ; 21(1): 281, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784929

RESUMO

BACKGROUND: Palmijihwanghwan (PJH) is a traditional medicine and eight constituents derived from PJH possess anti-inflammatory activities. However, the scientific evidence for its potential as a therapeutic agent for inflammatory lung disease has not yet been studied. In this study, we examined the protective effect of PJH in a mouse model of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke (CS) with lipopolysaccharide (LPS). METHODS: Mice received CS exposure for 8 weeks and intranasal instillation of LPS on weeks 1, 3, 5 and 7. PJH (100 and 200 mg/kg) was administrated daily 1 h before CS treatment for the last 4 weeks. RESULTS: Compared with CS plus LPS-exposed mice, mice in the PJH-treated group showed significantly decreased inflammatory cells count and reduced inflammatory cytokines including interleukin-1 beta (IL-1ß), IL-6 and tumor necrosis factor alpha (TNF-α) levels in broncho-alveolar lavage fluid (BALF) and lung tissue. PJH also suppressed the phosphorylation of nuclear factor kappa B (NF-κB) and extracellular signal-regulated kinase1/2 (ERK1/2) caused by CS plus LPS exposure. Furthermore, CS plus LPS induced increases in matrix metallopeptidase (MMP)-7, MMP-9, and transforming growth factor-ß (TGF-ß) expression and collagen deposition that were inhibited in PJH-treated mice. CONCLUSIONS: This study demonstrates that PJH prevents respiratory inflammation and airway remodeling caused by CS with LPS exposure suggesting potential therapy for the treatment of COPD.


Assuntos
Anti-Inflamatórios/farmacologia , Medicina Tradicional Chinesa/métodos , Extratos Vegetais/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Animais , Modelos Animais de Doenças , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/etiologia , Poluição por Fumaça de Tabaco/efeitos adversos
14.
Artigo em Inglês | MEDLINE | ID: mdl-34630623

RESUMO

The flavonoid myricetin is abundant in vegetables and has various bioactive properties, including anti-inflammatory and antioxidative activities. In the present study, we explored the effects of myricetin on alcohol-induced gastric ulcer in a rat model. To induce gastric ulcer, absolute ethanol (5 mL/kg body weight) was orally administrated to each rat. The positive control and myricetin-treated groups were given oral doses of omeprazole (20 mg/kg) or myricetin (12 mg/kg), respectively, 1 hour prior to the administration of absolute alcohol. We found that pretreatment with myricetin significantly decreased alcohol-induced gastric ulcer, hemorrhage, hyperemia, and epithelial cell loss in the gastric mucosa. Myricetin pretreatment reduced the level of malondialdehyde (MDA) and increased that of total glutathione (GSSG/GSH) and superoxide dismutase (SOD) in gastric tissues. In addition, it elevated the expression levels of cyclooxygenase-1 (COX-1) and prostaglandin E2 (PGE2) and decreased the phosphorylation of nuclear factor kappa B (NF-κB). Together, these results indicate that myricetin effectively inhibits ethanol-induced acute gastric injury by preventing oxidative damage, stimulating PGE2 production, and inhibiting NF-κB activation. We suggest that myricetin may be an alternative treatment for gastric injury caused by alcohol intake.

15.
Sci Rep ; 11(1): 8781, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888830

RESUMO

Obesity is implicated in cardiovascular disease and heart failure. When fatty acids are transported to and not adequately oxidized in cardiac cells, they accumulate, causing lipotoxicity in the heart. Since hepatic progesterone receptor membrane component 1 (Pgrmc1) suppressed de novo lipogenesis in a previous study, it was questioned whether cardiac Pgrmc1 protects against lipotoxicity. Hence, we focused on the role of cardiac Pgrmc1 in basal (Resting), glucose-dominant (Refed) and lipid-dominant high-fat diet (HFD) conditions. Pgrmc1 KO mice showed high FFA levels and low glucose levels compared to wild-type (WT) mice. Pgrmc1 KO mice presented low number of mitochondrial DNA copies in heart, and it was concomitantly observed with low expression of TCA cycle genes and oxidative phosphorylation genes. Pgrmc1 absence in heart presented low fatty acid oxidation activity in all conditions, but the production of acetyl-CoA and ATP was in pronounced suppression only in HFD condition. Furthermore, HFD Pgrmc1 KO mice resulted in high cardiac fatty acyl-CoA levels and TG level. Accordingly, HFD Pgrmc1 KO mice were prone to cardiac lipotoxicity, featuring high levels in markers of inflammation, endoplasmic reticulum stress, oxidative stress, fibrosis, and heart failure. In vitro study, it was also confirmed that Pgrmc1 enhances rates of mitochondrial respiration and fatty acid oxidation. This study is clinically important because mitochondrial defects in Pgrmc1 KO mice hearts represent the late phase of cardiac failure.


Assuntos
Ácidos Graxos/metabolismo , Proteínas de Membrana/fisiologia , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Receptores de Progesterona/fisiologia , Animais , Camundongos , Camundongos Knockout , Oxirredução
16.
Mar Drugs ; 18(11)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171870

RESUMO

In this study, Spirulina maxima derived pectin nanoparticles (SmPNPs) were synthesized and multiple biological effects were investigated using in vitro and in vivo models. SmPNPs were not toxic to Raw 264.7 cells and zebrafish embryos up to 1 mg/mL and 200 µg/mL, respectively. SmPNPs upregulated Il 10, Cat, Sod 2, Def 1, Def 2, and Muc 1 in Raw 264.7 cells and tlr2, tlr4b, tlr5b, il1ß, tnfα, cxcl8a, cxcl18b, ccl34a.4, ccl34b.4, muc5.1, muc5.2, muc5.3, hamp, cstd, hsp70, cat, and sod1 in the larvae and adult zebrafish, suggesting immunomodulatory activity. Exposure of larvae to SmPNPs followed by challenge with pathogenic bacterium Aeromonas hydrophila resulted a two-fold reduction of reactive oxygen species, indicating reduced oxidative stress compared to that in the control group. The cumulative percent survival of larvae exposed to SmPNPs (50 µg/mL) and adults fed diet supplemented with SmPNPs (4%) was 53.3% and 76.7%, respectively. Topical application of SmPNPs on adult zebrafish showed a higher wound healing percentage (48.9%) compared to that in the vehicle treated group (38.8%). Upregulated wound healing markers (tgfß1, timp2b, mmp9, tnfα, il1ß,ccl34a.4, and ccl34b.4), enhanced wound closure, and restored pigmentation indicated wound healing properties of SmPNPs. Overall, results uncover the multiple bioactivities of SmPNPs, which could be a promising biocompatible candidate for broad range of aquatic and human therapies.


Assuntos
Fatores Imunológicos/farmacologia , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Pectinas/farmacologia , Células RAW 264.7/efeitos dos fármacos , Spirulina/metabolismo , Cicatrização/efeitos dos fármacos , Peixe-Zebra , Aeromonas hydrophila/patogenicidade , Animais , Regulação da Expressão Gênica , Fatores Imunológicos/isolamento & purificação , Camundongos , Pectinas/isolamento & purificação , Células RAW 264.7/imunologia , Células RAW 264.7/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Sci Rep ; 10(1): 16316, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33005004

RESUMO

Hepatic gluconeogenesis is the main pathway for blood glucose maintenance activated during fasting. Retardation of insulin action, such as in diabetes mellitus, activates gluconeogenesis during the fed state. While the role of progesterone (P4) in diabetes is controversial, the P4 receptor, progesterone receptor membrane component 1 (PGRMC1), is known to stimulate pancreatic insulin secretion. We investigated the role of P4, via hepatic PGRMC1, during gluconeogenesis. The PGRMC1 binding chemical, AG-205, induced PGRMC1 monomer (25 kDa) abundance, and increased PEPCK expression and glucose production in parallel with cyclic AMP (cAMP) induction in Hep3B cells. PGRMC1-mediated cyclic AMP was inhibited by an adenylate cyclase inhibitor (MDL-12,330A). PEPCK suppression in Pgrmc1 KO hepatocyte was not observed after treatment of MDL-12,330A. PGRMC1 knockdown or overexpression systems in Hep3B cells confirmed that PGRMC1 mediates PEPCK expression via phosphorylation of cAMP-response element binding protein (CREB). CREB phosphorylation and PEPCK expression in primary hepatocytes were greater than that in PGRMC1 knock-out hepatocytes. Progesterone increased PGRMC1 expression, which induced cAMP and PEPCK induction and glucose production. In vivo, P4 suppressed gluconeogenesis following plasma insulin induction under normal conditions in a mouse model. However, P4 increased blood glucose via gluconeogenesis in parallel with increases in PGRMC1 and PEPCK expression in mice in both insulin-deficient and insulin-resistant conditions. We conclude that P4 increases hepatic glucose production via PGRMC1, which may exacerbate hyperglycaemia in diabetes where insulin action is limited.


Assuntos
Glicemia/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Proteínas de Membrana/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Adenilil Ciclases/metabolismo , Animais , Western Blotting , Linhagem Celular , AMP Cíclico/metabolismo , Gluconeogênese , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Progesterona/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
18.
J Ethnopharmacol ; 255: 112779, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32209388

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Asteris Radix et Rhizoma (AR) refers to the roots and rhizomes of Aster tataricus L., which is widely distributed throughout East Asia. AR has been consumed as a traditional medicine in Korea, Japan and China for the treatment of urologic symptoms. To date, however, the therapeutic effect of AR on benign prostatic hyperplasia (BPH) has not been investigated. AIM OF THE STUDY: The present study evaluated the therapeutic effects of AR on a testosterone-induced BPH rats. MATERIALS AND METHODS: We induced BPH to rats by subcutaneous injections (s.c) of testosterone propionate (TP) daily for four weeks. Rats were also administered daily oral gavage of AR (150 mg/kg) or vehicle. After four weeks of induction, all animals were euthanized humanely and their prostate glands were removed, weighed and processed for further analysis, including histopathological examination, real-time PCR, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and Western blot analysis. RESULTS: Administration of AR to TP-induced BPH rats considerably reduced prostate weight and concentrations of serum testosterone and prostate dihydrotestosterone (DHT). Epithelial thickness and expression of proliferating cell nuclear antigen (PCNA) were markedly suppressed by AR-treatment in the rats. Furthermore, the expression of the B-cell lymphoma 2 (Bcl-2) were reduced and expression of the Bcl-2-associated X protein (Bax) increased, resulting in significant reduction in Bcl-2/Bax ratio. In addition, AR decreased the level of pro-inflammatory cytokines, including interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were reduced by AR treatment in a TP-induced BPH rat model. CONCLUSIONS: AR alleviates BPH by promoting apoptosis and suppressing inflammation, indicating that AR may be used clinically to treat BPH accompanied by inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Aster , Extratos Vegetais/farmacologia , Raízes de Plantas , Próstata/efeitos dos fármacos , Hiperplasia Prostática/prevenção & controle , Rizoma , Propionato de Testosterona , Animais , Anti-Inflamatórios/isolamento & purificação , Proteínas Reguladoras de Apoptose/metabolismo , Aster/química , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Masculino , Tamanho do Órgão , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Próstata/metabolismo , Próstata/patologia , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Ratos Sprague-Dawley , Rizoma/química
19.
J Ethnopharmacol ; 233: 115-122, 2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30508623

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ulmus macrocarpa Hance (UMH), of the family Ulmaceae, is a deciduous tree, widely distributed throughout Korea. UMH has been used as a traditional oriental medicine in Korea for the treatment of urological disorders, including bladder outlet obstruction (BOO), lower urinary tract syndrome (LUTS), diuresis, and hematuria. To date, its possible protective effects against benign prostatic hyperplasia (BPH) have not been analyzed. AIM OF THE STUDY: This study investigated the effects of UMH on the development of BPH using a rat model of testosterone propionate (TP)-induced BPH. MATERIALS AND METHODS: BPH was induced by daily subcutaneous injections of testosterone propionate (TP) for four weeks. UMH was administrated daily by oral gavage at a dose of 150 mg/kg during the four weeks of TP injections. Animals were sacrificed, and their prostates were weighed and subjected to histopathological examination, TUNEL assay, and western blot analysis. RESULTS: Treatment of BPH-model rats with UMH significantly reduced prostate weight, serum testosterone concentration and dihydrotestosterone (DHT) concentration in prostate tissue. TP-induced prostatic hyperplasia and the expression of proliferating cell nuclear antigen (PCNA) were significantly attenuated in UMH-treated rats. In addition, UMH administration markedly induced the activation of caspases-3, - 8, and - 9 in prostate tissues of BPH rats, accompanied by upregulation of expression of Fas, Fas-associated protein with death domain (FADD), and Fas ligand (FasL) and a reduction in the ratio of B-cell lymphoma 2 (Bcl-2) to Bcl-2-associated X protein (Bax). CONCLUSIONS: UMH effectively inhibited the proliferation and promoted the apoptosis of prostate cells, suggesting it may be useful for the treatment of BPH.


Assuntos
Extratos Vegetais/uso terapêutico , Hiperplasia Prostática/tratamento farmacológico , Ulmus , Animais , Apoptose/efeitos dos fármacos , Di-Hidrotestosterona/metabolismo , Masculino , Fitoterapia , Extratos Vegetais/farmacologia , Próstata/efeitos dos fármacos , Próstata/patologia , Próstata/fisiologia , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Ratos Sprague-Dawley , Testosterona/sangue , Propionato de Testosterona
20.
Biol Pharm Bull ; 42(1): 1-9, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30381617

RESUMO

Veratrum maackii (VM), a perennial plant in the Melanthiaceae family, has anti-hypertensive, anti-cholinergic, anti-asthmatic, anti-tussive, anti-fungal, anti-melanogenesis, and anti-tumor activities. Here, we investigated the therapeutic effect of VM on benign prostatic hyperplasia (BPH) in human normal prostate cell line (WPMY-1) and a testosterone propionate-induced BPH animal model. WPMY-1 cells were treated with VM (1-10 µg/mL) and testosterone propionate (100 nM). BPH in rats was generated via daily subcutaneous injections of testosterone propionate (3 mg/kg) dissolved in corn oil, for 4 weeks. VM (150 mg/kg) was administered daily for 4 weeks by oral gavage concurrently with the testosterone propionate. All rats were sacrificed and the prostates were dissected, weighed, and subjected to histological, immunohistochemical, and biochemical examinations. Immunoblotting experiments indicated that WPMY-1 cells treated testosterone propionate had increased expression of prostate specific antigen (PSA) and androgen receptor (AR), and treatment with VM or finasteride blocked this effect. In rat model, VM significantly reduced prostate weight, prostatic hyperplasia, prostatic levels of dihydrotestosterone (DHT), and expression of proliferation markers such as proliferating cell nuclear antigen (PCNA) and cyclin D1, but increased the expression of pro-apoptotic Bcl-2-associated X protein (Bax) and the cleavage of caspase-3. VM administration also suppressed the testosterone propionate-induced activation of nuclear factor-kappaB (NF-κB). Our results indicate that VM effectively represses the development of testosterone propionate-induced BPH, suggesting it may be a useful treatment agent for BPH.


Assuntos
Extratos Vegetais/uso terapêutico , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/tratamento farmacológico , Propionato de Testosterona/toxicidade , Veratrum , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Masculino , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Hiperplasia Prostática/patologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...